Code-Writing Agents
Create agents that write, debug, and optimize code autonomously
Your Progress
0 / 5 completedBuilding Your Coding Agent
A production coding agent needs four components: orchestrator (workflow), codebase analyzer (context), code generator (LLM integration), and CI/CD pipeline (automation). Here's production-ready code.
Interactive: Code Explorer
Explore each component:
🎯
Agent Orchestrator
Coordinates the coding workflow from task to deployment
class CodingAgentOrchestrator:
"""Orchestrate autonomous coding workflow"""
def __init__(self, codebase_path: str, llm: LLM):
self.codebase = CodebaseAnalyzer(codebase_path)
self.llm = llm
self.planner = TaskPlanner(llm)
self.coder = CodeGenerator(llm)
self.tester = TestRunner()
self.reviewer = CodeReviewer()
def handle_task(self, task: str) -> TaskResult:
"""Execute coding task from spec to validated code"""
# 1. Understand context
context = self.codebase.analyze_relevant_code(task)
# 2. Plan approach
plan = self.planner.create_plan(task, context)
print(f"Plan: {plan.steps}")
# 3. Generate code
changes = []
for step in plan.steps:
code = self.coder.generate(step, context)
changes.append(code)
context.update(code) # Update context with new code
# 4. Run tests
test_results = self.tester.run_all_tests()
# 5. Iterate if tests fail
max_iterations = 3
for i in range(max_iterations):
if test_results.all_passed:
break
# Agent debugs and fixes
fixes = self.coder.fix_failures(test_results, context)
changes.extend(fixes)
test_results = self.tester.run_all_tests()
# 6. Human review
review = self.reviewer.request_review(changes)
return TaskResult(
changes=changes,
tests_passed=test_results.all_passed,
review_status=review.status,
iterations=i + 1
)
def auto_fix_bug(self, error_trace: str) -> BugFix:
"""Autonomous bug fixing"""
# Analyze error
root_cause = self.codebase.find_bug_location(error_trace)
# Generate fix
fix = self.coder.generate_fix(root_cause)
# Add regression test
test = self.coder.generate_test(root_cause, fix)
# Validate
self.tester.run_tests([test])
return BugFix(fix=fix, test=test)Complete Usage Example
# Initialize agent
agent = CodingAgentOrchestrator(
codebase_path="./src",
llm=OpenAI(model="gpt-4", temperature=0.2)
)
# Feature implementation
result = agent.handle_task("""
Add password reset functionality:
- Send reset email with token
- Token expires in 1 hour
- Log all reset attempts
- Add tests
""")
print(f"Generated {len(result.changes)} file changes")
print(f"Tests: {'✅ Passed' if result.tests_passed else '❌ Failed'}")
print(f"Iterations: {result.iterations}")
# Bug fixing
bug_fix = agent.auto_fix_bug("""
Traceback (most recent call last):
File "api.py", line 45, in process_payment
total = sum([item.price for item in cart.items])
TypeError: unsupported operand type(s) for +: 'int' and 'NoneType'
""")
print(f"Fix applied to {bug_fix.fix.file}")
print(f"Regression test added: {bug_fix.test}")
# CI/CD integration
pipeline = CodingAgentPipeline(agent)
# Auto-implement GitHub issue
pipeline.auto_implement_feature(
"https://github.com/org/repo/issues/123"
)
# Auto-fix production bug
pipeline.auto_fix_production_bug(error_log)💡
Deployment Strategy
Week 1: Agent generates code, human reviews 100%.
Week 2-4: Agent handles simple tasks autonomously (tests, docs, small fixes).
Month 2: Agent implements features with human review.
Month 3+: Agent handles 50% of issues end-to-end. Human focuses on architecture and complex problems.
Success metric: 10x productivity increase on routine tasks, 90%+ test coverage, human time freed for high-value work.