Tool Calling Basics
Understanding tool schemas and how LLMs interpret function definitions
Your Progress
0 / 5 completedTool Schemas
A tool schema is how you tell an LLM what a function does and what inputs it expects. It's the contract between your code and the AI.
📋Schema Format Comparison
Click each format to see the same tool in different schema styles
{
"name": "get_weather",
"description": "Get current weather for a location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "City name, e.g. Tokyo"
},
"unit": {
"type": "string",
"enum": ["celsius", "fahrenheit"],
"description": "Temperature unit"
}
},
"required": ["location"]
}
}� Note:
Most common format, uses JSON Schema for parameters
🔑 Essential Schema Elements
nameClear, action-oriented function name (e.g., get_weather, not weather)descriptionExplains WHAT the tool does and WHEN to use itparametersJSON Schema defining inputs with types and descriptionsrequiredList of mandatory parameters (optional parameters are flexible)✅ Schema Best Practices
✓ DO:
- • Use verb-first names (get, create, update)
- • Write clear, specific descriptions
- • Include examples in descriptions
- • Use enum for fixed options
✗ DON'T:
- • Use vague names (handler, process)
- • Write one-word descriptions
- • Omit parameter descriptions
- • Make everything required